AUTOTRAINER: An Automatic DNN Training Problem Detection and Repair SystemTechnical Track
Tue 25 May 2021 22:50 - 23:10 at Blended Sessions Room 3 - 1.1.3. Deep Neural Networks: Validation #1
With machine learning models especially Deep Neural Network (DNN) models becoming an integral part of the new intelligent software, new tools to support their engineering process are in high demand. Existing DNN debugging tools are either post-training which wastes a lot of time training a buggy model and requires expertises, or limited on collecting training logs without analyzing the problem not even fixing them. In this paper, we propose AUTOTRAINER, a DNN training monitoring and automatic repairing tool which supports detecting and auto repairing five commonly seen training problems. During training, it periodically checks the training status and detects potential problems. Once a problem is found, AUTOTRAINER tries to fix it by using built-in state-of-the-art solutions. It supports various model structures and input data types, such as Convolutional Neural Networks (CNNs) for image and Recurrent Neural Networks (RNNs) for texts. Our evaluation on 6 datasets, 495 models show that AUTOTRAINER can effectively detect all potential problems with 100% detection rate and no false positives. Among all models with problems, it can fix 97.33% of them, increasing the accuracy by 47.08% on average
Tue 25 MayDisplayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change
10:30 - 11:30 | 1.1.3. Deep Neural Networks: Validation #1Technical Track at Blended Sessions Room 3 +12h Chair(s): Oscar Dieste Universidad Politécnica de Madrid | ||
10:30 20mPaper | Operation is the hardest teacher: estimating DNN accuracy looking for mispredictionsTechnical Track Technical Track Antonio Guerriero Università di Napoli Federico II, Roberto Pietrantuono Università di Napoli Federico II, Stefano Russo Università di Napoli Federico II Pre-print Media Attached | ||
10:50 20mPaper | AUTOTRAINER: An Automatic DNN Training Problem Detection and Repair SystemTechnical Track Technical Track Xiaoyu Zhang Xi'an Jiaotong University, Juan Zhai Rutgers University, Shiqing Ma Rutgers University, Chao Shen Xi'an Jiaotong University Pre-print Media Attached | ||
11:10 20mPaper | Self-Checking Deep Neural Networks in DeploymentTechnical Track Technical Track Yan Xiao National University of Singapore, Ivan Beschastnikh University of British Columbia, David Rosenblum George Mason University, Changsheng Sun National University of Singapore, Sebastian Elbaum University of Virginia, Yun Lin National University of Singapore, Jin Song Dong National University of Singapore Pre-print Media Attached |
22:30 - 23:30 | |||
22:30 20mPaper | Operation is the hardest teacher: estimating DNN accuracy looking for mispredictionsTechnical Track Technical Track Antonio Guerriero Università di Napoli Federico II, Roberto Pietrantuono Università di Napoli Federico II, Stefano Russo Università di Napoli Federico II Pre-print Media Attached | ||
22:50 20mPaper | AUTOTRAINER: An Automatic DNN Training Problem Detection and Repair SystemTechnical Track Technical Track Xiaoyu Zhang Xi'an Jiaotong University, Juan Zhai Rutgers University, Shiqing Ma Rutgers University, Chao Shen Xi'an Jiaotong University Pre-print Media Attached | ||
23:10 20mPaper | Self-Checking Deep Neural Networks in DeploymentTechnical Track Technical Track Yan Xiao National University of Singapore, Ivan Beschastnikh University of British Columbia, David Rosenblum George Mason University, Changsheng Sun National University of Singapore, Sebastian Elbaum University of Virginia, Yun Lin National University of Singapore, Jin Song Dong National University of Singapore Pre-print Media Attached |